The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids

The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 229(2010), 21 vom: 20. Okt., Seite 8199-8210
1. Verfasser: Hesford, Andrew J (VerfasserIn)
Weitere Verfasser: Waag, Robert C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM201509628
003 DE-627
005 20250212000708.0
007 tu
008 231223s2010 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0672.xml 
035 |a (DE-627)NLM201509628 
035 |a (NLM)20835366 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hesford, Andrew J  |e verfasserin  |4 aut 
245 1 4 |a The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased 
650 4 |a Journal Article 
700 1 |a Waag, Robert C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 229(2010), 21 vom: 20. Okt., Seite 8199-8210  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:229  |g year:2010  |g number:21  |g day:20  |g month:10  |g pages:8199-8210 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 229  |j 2010  |e 21  |b 20  |c 10  |h 8199-8210