Structured max-margin learning for inter-related classifier training and multilabel image annotation

In this paper, a structured max-margin learning algorithm is developed to achieve more effective training of a large number of inter-related classifiers for multilabel image annotation application. To leverage multilabel images for classifier training, each multilabel image is partitioned into a set...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 3 vom: 15. März, Seite 837-54
1. Verfasser: Fan, Jianping (VerfasserIn)
Weitere Verfasser: Shen, Yi, Yang, Chunlei, Zhou, Ning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM201502224
003 DE-627
005 20231223222547.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2073476  |2 doi 
028 5 2 |a pubmed24n0672.xml 
035 |a (DE-627)NLM201502224 
035 |a (NLM)20833601 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Jianping  |e verfasserin  |4 aut 
245 1 0 |a Structured max-margin learning for inter-related classifier training and multilabel image annotation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2011 
500 |a Date Revised 17.02.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a structured max-margin learning algorithm is developed to achieve more effective training of a large number of inter-related classifiers for multilabel image annotation application. To leverage multilabel images for classifier training, each multilabel image is partitioned into a set of image instances (image regions or image patches) and an automatic instance label identification algorithm is developed to assign multiple labels (which are given at the image level) to the most relevant image instances. A K-way min-max cut algorithm is developed for automatic instance clustering and kernel weight determination, where multiple base kernels are seamlessly combined to address the issue of huge intra-concept visual diversity more effectively. Second, a visual concept network is constructed for characterizing the inter-concept visual similarity contexts more precisely in the high-dimensional multimodal feature space. The visual concept network is used to determine the inter-related learning tasks directly in the feature space rather than in the label space because feature space is the common space for classifier training and image classification. Third, a parallel computing platform is developed to achieve more effective learning of a large number of inter-related classifiers over the visual concept network. A structured max-margin learning algorithm is developed by incorporating the visual concept network, max-margin Markov networks and multitask learning to address the issue of huge inter-concept visual similarity more effectively. By leveraging the inter-concept visual similarity contexts for inter-related classifier training, our structured max-margin learning algorithm can significantly enhance the discrimination power of the inter-related classifiers. Our experiments have also obtained very positive results for a large number of object classes and image concepts 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Shen, Yi  |e verfasserin  |4 aut 
700 1 |a Yang, Chunlei  |e verfasserin  |4 aut 
700 1 |a Zhou, Ning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 3 vom: 15. März, Seite 837-54  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:3  |g day:15  |g month:03  |g pages:837-54 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2073476  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 3  |b 15  |c 03  |h 837-54