SDS-dependent proteases induced by ABA and its relation to Rubisco and Rubisco activase contents in rice leaves

Copyright © 2010 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 48(2010), 10-11 vom: 01. Okt., Seite 808-12
1. Verfasser: Fukayama, Hiroshi (VerfasserIn)
Weitere Verfasser: Abe, Rie, Uchida, Naotsugu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Plant Proteins rca protein, plant Abscisic Acid 72S9A8J5GW Cycloheximide 98600C0908 Peptide Hydrolases EC 3.4.- mehr... Ribulose-Bisphosphate Carboxylase EC 4.1.1.39 Adenine JAC85A2161
Beschreibung
Zusammenfassung:Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Protease activities and its relation to the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase were investigated in detached leaves of rice (Oryza sativa L.) floated on the solutions containing abscisic acid (ABA) or benzyladenine (BA). Rubisco and Rubisco activase contents were decreased during the time course and the decreases were enhanced by ABA and suppressed by BA. The decrease in Rubisco activase was faster than that in Rubisco. SDS-dependent protease activities at 50-70 kDa (rice SDS-dependent protease: RSP) analyzed by the gelatin containing PAGE were significantly enhanced by ABA. RSPs were also increased in attached leaves during senescence. RSPs had the pH optimum of 5.5, suggesting that RSPs are vacuolar protease. Both decrease in Rubisco and Rubisco activase contents and increase in RSPs activities were suppressed by cycloheximide. These findings indicate that the activities of RSPs are well correlated with the decrease in these protein contents. Immunoblotting analysis showed that Rubisco in the leaf extracts was completely degraded by 5h at pH 5.5 with SDS where it was optimal condition for RSPs. However, the degradation of Rubisco did not proceed at pH 7.5 without SDS where it is near physiological condition for stromal proteins. Rubisco activase was degraded at similar rate under both conditions. These results suggest that RSPs can functions in a senescence related degradation system of chloroplast protein in rice leaves. Rubisco activase would be more susceptible to proteolysis than Rubisco under physiological condition and this could affect the contents of these proteins in leaves
Beschreibung:Date Completed 14.04.2011
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2010.08.002