Frequency-induced stratification in viscoelastic microfluidics
We present a mechanism in the field of microfluidics by which the stratification of a viscoelastic fluid can be induced in a channel on the microscale by applying a dynamic pressure gradient at frequencies within the range of sound. Stratification is obtained with identical layers, parallel to the c...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 26(2010), 19 vom: 05. Okt., Seite 15084-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | We present a mechanism in the field of microfluidics by which the stratification of a viscoelastic fluid can be induced in a channel on the microscale by applying a dynamic pressure gradient at frequencies within the range of sound. Stratification is obtained with identical layers, parallel to the channel walls, whose number can be tailored. These layers are separated by 2D zero-velocity planes. This would allow different tracer particles with small diffusion coefficients to be confined in different fluid layers within the same microchannel. We obtain analytical results that allow us to make theoretical predictions regarding the possible experimental realization of stratification in a microchannel using a biofluid. We find a relation among the diffusion coefficient, fluid properties, and microchannel thickness that establishes a condition for the confinement of tracer particles to a layer. This mechanism has potential use in micrototal analysis systems and MEMS-containing viscoelastic fluids |
---|---|
Beschreibung: | Date Completed 03.01.2011 Date Revised 29.09.2010 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la1024422 |