Approximately global optimization for robust alignment of generalized shapes

In this paper, we introduce a novel method to solve shape alignment problems. We use gray-scale "images" to represent source shapes, and propose a novel two-component Gaussian Mixture (GM) distance map representation for target shapes. This asymmetric representation is a flexible image-bas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 6 vom: 07. Juni, Seite 1116-31
1. Verfasser: Li, Hongsheng (VerfasserIn)
Weitere Verfasser: Shen, Tian, Huang, Xiaolei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM201373262
003 DE-627
005 20231223222321.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.169  |2 doi 
028 5 2 |a pubmed24n0671.xml 
035 |a (DE-627)NLM201373262 
035 |a (NLM)20820077 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Hongsheng  |e verfasserin  |4 aut 
245 1 0 |a Approximately global optimization for robust alignment of generalized shapes 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2011 
500 |a Date Revised 01.06.2011 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we introduce a novel method to solve shape alignment problems. We use gray-scale "images" to represent source shapes, and propose a novel two-component Gaussian Mixture (GM) distance map representation for target shapes. This asymmetric representation is a flexible image-based representation which is able to represent different kinds of shape data, including continuous contours, unstructured sparse point sets, edge maps, and even gray-scale gradient maps. Using this representation, a new energy function based on a novel two-component Gaussian Mixture distance model is proposed. The new energy function was empirically evaluated to be a more robust shape dissimilarity metric that can be computed efficiently. Such high efficiency is essential for global optimization methods. We adopt and modify one of them, the Particle Swarm Optimization (PSO), to effectively estimate the global optimum of the new energy function. Differently from the original PSO, several new strategies were employed to make the optimization more robust and prevent it from converging prematurely. The overall performance of the proposed framework as well as the properties of each algorithmic component were evaluated and compared with those of some state-of-the-art methods. Extensive experiments and comparison performed on generalized 2D and 3D shape data demonstrate the robustness and effectiveness of the method 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Shen, Tian  |e verfasserin  |4 aut 
700 1 |a Huang, Xiaolei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 6 vom: 07. Juni, Seite 1116-31  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:6  |g day:07  |g month:06  |g pages:1116-31 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.169  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 6  |b 07  |c 06  |h 1116-31