A hybrid approach to detect and localize texts in natural scene images
Text detection and localization in natural scene images is important for content-based image analysis. This problem is challenging due to the complex background, the non-uniform illumination, the variations of text font, size and line orientation. In this paper, we present a hybrid approach to robus...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 3 vom: 15. März, Seite 800-13 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Text detection and localization in natural scene images is important for content-based image analysis. This problem is challenging due to the complex background, the non-uniform illumination, the variations of text font, size and line orientation. In this paper, we present a hybrid approach to robustly detect and localize texts in natural scene images. A text region detector is designed to estimate the text existing confidence and scale information in image pyramid, which help segment candidate text components by local binarization. To efficiently filter out the non-text components, a conditional random field (CRF) model considering unary component properties and binary contextual component relationships with supervised parameter learning is proposed. Finally, text components are grouped into text lines/words with a learning-based energy minimization method. Since all the three stages are learning-based, there are very few parameters requiring manual tuning. Experimental results evaluated on the ICDAR 2005 competition dataset show that our approach yields higher precision and recall performance compared with state-of-the-art methods. We also evaluated our approach on a multilingual image dataset with promising results |
---|---|
Beschreibung: | Date Completed 27.05.2011 Date Revised 17.02.2011 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2010.2070803 |