Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation

Aniline-catalyzed hydrazone ligation between surface-immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the eff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 19 vom: 05. Okt., Seite 15430-5
1. Verfasser: Byeon, Ji-Yeon (VerfasserIn)
Weitere Verfasser: Limpoco, F T, Bailey, Ryan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Aniline Compounds Hydrazones aniline SIR7XX2F1K
Beschreibung
Zusammenfassung:Aniline-catalyzed hydrazone ligation between surface-immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH-dependent noncovalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent
Beschreibung:Date Completed 03.01.2011
Date Revised 17.03.2024
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1021824