Iterative shrinkage approach to restoration of optical imagery

The problem of reconstruction of digital images from their degraded measurements is regarded as a problem of central importance in various fields of engineering and imaging sciences. In such cases, the degradation is typically caused by the resolution limitations of an imaging device in use and/or b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 2 vom: 20. Feb., Seite 405-16
1. Verfasser: Shaked, Elad (VerfasserIn)
Weitere Verfasser: Michailovich, Oleg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The problem of reconstruction of digital images from their degraded measurements is regarded as a problem of central importance in various fields of engineering and imaging sciences. In such cases, the degradation is typically caused by the resolution limitations of an imaging device in use and/or by the destructive influence of measurement noise. Specifically, when the noise obeys a Poisson probability law, standard approaches to the problem of image reconstruction are based upon using fixed-point algorithms which follow the methodology first proposed by Richardson and Lucy. The practice of using these methods, however, shows that their convergence properties tend to deteriorate at relatively high noise levels. Accordingly, in the present paper, a novel method for denoising and/or deblurring of digital images corrupted by Poisson noise is introduced. The proposed method is derived under the assumption that the image of interest can be sparsely represented in the domain of a linear transform. Consequently, a shrinkage-based iterative procedure is proposed, which guarantees the solution to converge to the global maximizer of an associated maximum a posteriori criterion. It is shown in a series of computer-simulated experiments that the proposed method outperforms a number of existing alternatives in terms of stability, precision, and computational efficiency
Beschreibung:Date Completed 27.04.2011
Date Revised 14.01.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2010.2070073