A nonrigid kernel-based framework for 2D-3D pose estimation and 2D image segmentation

In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 6 vom: 15. Juni, Seite 1098-115
1. Verfasser: Sandhu, Romeil (VerfasserIn)
Weitere Verfasser: Dambreville, Samuel, Yezzi, Anthony, Tannenbaum, Allen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM200531344
003 DE-627
005 20250211220202.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.162  |2 doi 
028 5 2 |a pubmed25n0668.xml 
035 |a (DE-627)NLM200531344 
035 |a (NLM)20733218 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sandhu, Romeil  |e verfasserin  |4 aut 
245 1 2 |a A nonrigid kernel-based framework for 2D-3D pose estimation and 2D image segmentation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2011 
500 |a Date Revised 17.05.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: first, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one's training set, we evolve the pre-image obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Dambreville, Samuel  |e verfasserin  |4 aut 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
700 1 |a Tannenbaum, Allen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 6 vom: 15. Juni, Seite 1098-115  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:33  |g year:2011  |g number:6  |g day:15  |g month:06  |g pages:1098-115 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 6  |b 15  |c 06  |h 1098-115