Self-validated labeling of Markov random fields for image segmentation

This paper addresses the problem of self-validated labeling of Markov random fields (MRFs), namely to optimize an MRF with unknown number of labels. We present graduated graph cuts (GGC), a new technique that extends the binary s-t graph cut for self-validated labeling. Specifically, we use the spli...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 32(2010), 10 vom: 01. Okt., Seite 1871-87
1. Verfasser: Feng, Wei (VerfasserIn)
Weitere Verfasser: Jia, Jiaya, Liu, Zhi-Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM200449729
003 DE-627
005 20250211214357.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.24  |2 doi 
028 5 2 |a pubmed25n0668.xml 
035 |a (DE-627)NLM200449729 
035 |a (NLM)20724763 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Wei  |e verfasserin  |4 aut 
245 1 0 |a Self-validated labeling of Markov random fields for image segmentation 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 20.08.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of self-validated labeling of Markov random fields (MRFs), namely to optimize an MRF with unknown number of labels. We present graduated graph cuts (GGC), a new technique that extends the binary s-t graph cut for self-validated labeling. Specifically, we use the split-and-merge strategy to decompose the complex problem to a series of tractable subproblems. In terms of Gibbs energy minimization, a suboptimal labeling is gradually obtained based upon a set of cluster-level operations. By using different optimization structures, we propose three practical algorithms: tree-structured graph cuts (TSGC), net-structured graph cuts (NSGC), and hierarchical graph cuts (HGC). In contrast to previous methods, the proposed algorithms can automatically determine the number of labels, properly balance the labeling accuracy, spatial coherence, and the labeling cost (i.e., the number of labels), and are computationally efficient, independent to initialization, and able to converge to good local minima of the objective energy function. We apply the proposed algorithms to natural image segmentation. Experimental results show that our algorithms produce generally feasible segmentations for benchmark data sets, and outperform alternative methods in terms of robustness to noise, speed, and preservation of soft boundaries 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
700 1 |a Liu, Zhi-Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 32(2010), 10 vom: 01. Okt., Seite 1871-87  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:10  |g day:01  |g month:10  |g pages:1871-87 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.24  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 10  |b 01  |c 10  |h 1871-87