Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories

In this paper, we study the problem of segmenting tracked feature point trajectories of multiple moving objects in an image sequence. Using the affine camera model, this problem can be cast as the problem of segmenting samples drawn from multiple linear subspaces. In practice, due to limitations of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 10 vom: 01. Okt., Seite 1832-45
1. Verfasser: Rao, Shankar (VerfasserIn)
Weitere Verfasser: Tron, Roberto, Vidal, René, Ma, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM200449702
003 DE-627
005 20231223220606.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.191  |2 doi 
028 5 2 |a pubmed24n0668.xml 
035 |a (DE-627)NLM200449702 
035 |a (NLM)20724760 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rao, Shankar  |e verfasserin  |4 aut 
245 1 0 |a Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 20.08.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we study the problem of segmenting tracked feature point trajectories of multiple moving objects in an image sequence. Using the affine camera model, this problem can be cast as the problem of segmenting samples drawn from multiple linear subspaces. In practice, due to limitations of the tracker, occlusions, and the presence of nonrigid objects in the scene, the obtained motion trajectories may contain grossly mistracked features, missing entries, or corrupted entries. In this paper, we develop a robust subspace separation scheme that deals with these practical issues in a unified mathematical framework. Our methods draw strong connections between lossy compression, rank minimization, and sparse representation. We test our methods extensively on the Hopkins155 motion segmentation database and other motion sequences with outliers and missing data. We compare the performance of our methods to state-of-the-art motion segmentation methods based on expectation-maximization and spectral clustering. For data without outliers or missing information, the results of our methods are on par with the state-of-the-art results and, in many cases, exceed them. In addition, our methods give surprisingly good performance in the presence of the three types of pathological trajectories mentioned above. All code and results are publicly available at http://perception.csl.uiuc.edu/coding/motion/ 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Tron, Roberto  |e verfasserin  |4 aut 
700 1 |a Vidal, René  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 10 vom: 01. Okt., Seite 1832-45  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:10  |g day:01  |g month:10  |g pages:1832-45 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.191  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 10  |b 01  |c 10  |h 1832-45