L2 kernel classification

Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems. Well-known examples include the kernel density estimate (KDE) for density estimation and the support vector machine (SVM) for classification. We propose a kernel classifier that optimizes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 10 vom: 01. Okt., Seite 1822-31
1. Verfasser: Kim, JooSeuk (VerfasserIn)
Weitere Verfasser: Scott, Clayton D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM200449699
003 DE-627
005 20231223220606.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.188  |2 doi 
028 5 2 |a pubmed24n0668.xml 
035 |a (DE-627)NLM200449699 
035 |a (NLM)20724759 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, JooSeuk  |e verfasserin  |4 aut 
245 1 0 |a L2 kernel classification 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 20.08.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nonparametric kernel methods are widely used and proven to be successful in many statistical learning problems. Well-known examples include the kernel density estimate (KDE) for density estimation and the support vector machine (SVM) for classification. We propose a kernel classifier that optimizes the L2 or integrated squared error (ISE) of a "difference of densities." We focus on the Gaussian kernel, although the method applies to other kernels suitable for density estimation. Like a support vector machine (SVM), the classifier is sparse and results from solving a quadratic program. We provide statistical performance guarantees for the proposed L2 kernel classifier in the form of a finite sample oracle inequality and strong consistency in the sense of both ISE and probability of error. A special case of our analysis applies to a previously introduced ISE-based method for kernel density estimation. For dimensionality greater than 15, the basic L2 kernel classifier performs poorly in practice. Thus, we extend the method through the introduction of a natural regularization parameter, which allows it to remain competitive with the SVM in high dimensions. Simulation results for both synthetic and real-world data are presented 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Scott, Clayton D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 10 vom: 01. Okt., Seite 1822-31  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:10  |g day:01  |g month:10  |g pages:1822-31 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.188  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 10  |b 01  |c 10  |h 1822-31