|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM200449664 |
003 |
DE-627 |
005 |
20231223220606.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2010.21
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0668.xml
|
035 |
|
|
|a (DE-627)NLM200449664
|
035 |
|
|
|a (NLM)20724756
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Davy, Manuel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Generative supervised classification using Dirichlet process priors
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.11.2010
|
500 |
|
|
|a Date Revised 20.08.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Choosing the appropriate parameter prior distributions associated to a given bayesian model is a challenging problem. Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the available prior information. This paper studies a new generative supervised classifier which assumes that the parameter prior distributions conditioned on each class are mixtures of Dirichlet processes. The motivations for using mixtures of Dirichlet processes is their known ability to model accurately a large class of probability distributions. A Monte Carlo method allowing one to sample according to the resulting class-conditional posterior distributions is then studied. The parameters appearing in the class-conditional densities can then be estimated using these generated samples (following bayesian learning). The proposed supervised classifier is applied to the classification of altimetric waveforms backscattered from different surfaces (oceans, ices, forests, and deserts). This classification is a first step before developing tools allowing for the extraction of useful geophysical information from altimetric waveforms backscattered from nonoceanic surfaces
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Tourneret, Jean-Yves
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 32(2010), 10 vom: 01. Okt., Seite 1781-94
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2010
|g number:10
|g day:01
|g month:10
|g pages:1781-94
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2010.21
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2010
|e 10
|b 01
|c 10
|h 1781-94
|