Generative supervised classification using Dirichlet process priors

Choosing the appropriate parameter prior distributions associated to a given bayesian model is a challenging problem. Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the available prior information. This paper studies...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 10 vom: 01. Okt., Seite 1781-94
1. Verfasser: Davy, Manuel (VerfasserIn)
Weitere Verfasser: Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM200449664
003 DE-627
005 20231223220606.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.21  |2 doi 
028 5 2 |a pubmed24n0668.xml 
035 |a (DE-627)NLM200449664 
035 |a (NLM)20724756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Davy, Manuel  |e verfasserin  |4 aut 
245 1 0 |a Generative supervised classification using Dirichlet process priors 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 20.08.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Choosing the appropriate parameter prior distributions associated to a given bayesian model is a challenging problem. Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the available prior information. This paper studies a new generative supervised classifier which assumes that the parameter prior distributions conditioned on each class are mixtures of Dirichlet processes. The motivations for using mixtures of Dirichlet processes is their known ability to model accurately a large class of probability distributions. A Monte Carlo method allowing one to sample according to the resulting class-conditional posterior distributions is then studied. The parameters appearing in the class-conditional densities can then be estimated using these generated samples (following bayesian learning). The proposed supervised classifier is applied to the classification of altimetric waveforms backscattered from different surfaces (oceans, ices, forests, and deserts). This classification is a first step before developing tools allowing for the extraction of useful geophysical information from altimetric waveforms backscattered from nonoceanic surfaces 
650 4 |a Journal Article 
700 1 |a Tourneret, Jean-Yves  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 10 vom: 01. Okt., Seite 1781-94  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:10  |g day:01  |g month:10  |g pages:1781-94 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.21  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 10  |b 01  |c 10  |h 1781-94