A facile "air-molding" method for nanofabrication

In this letter, we demonstrate a spherical nanocavities fabrication using an "air-molding" method, which is implemented by modulating the pressure difference across air-liquid interfaces in nanoholes on the mold. The cavities formation is theoretically considered and experimentally verifie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 18 vom: 21. Sept., Seite 14889-93
1. Verfasser: Zhou, Ming (VerfasserIn)
Weitere Verfasser: Li, Jian, Yan, Feng, Fan, Xiaomeng, Cai, Lan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this letter, we demonstrate a spherical nanocavities fabrication using an "air-molding" method, which is implemented by modulating the pressure difference across air-liquid interfaces in nanoholes on the mold. The cavities formation is theoretically considered and experimentally verified at macroscale first, and then a series of experiments are performed over a patterned surface with sub-300 nm holes by varying the pressure difference by sending a PDMS prepolymer coated mold into a vacuum chamber with changeable pressure. Results show that the air-molding method for spherical cavities fabrication is feasible not only at macroscale, but also at the nanoscale when introducing a pressure difference across the air-liquid interface. And the cavities shape is easily controlled by modulating the pressure in the vacuum chamber. The spherical cavities in this paper have application potential in the optical field and in micro- and nanofluidics
Beschreibung:Date Completed 04.01.2011
Date Revised 14.09.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la102427g