Online sparse Gaussian process regression and its applications

We present a new Gaussian process (GP) inference algorithm, called online sparse matrix Gaussian processes (OSMGP), and demonstrate its merits by applying it to the problems of head pose estimation and visual tracking. The OSMGP is based upon the observation that for kernels with local support, the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 2 vom: 15. Feb., Seite 391-404
1. Verfasser: Ranganathan, Ananth (VerfasserIn)
Weitere Verfasser: Yang, Ming-Hsuan, Ho, Jeffrey
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM200372300
003 DE-627
005 20231223220436.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2066984  |2 doi 
028 5 2 |a pubmed24n0668.xml 
035 |a (DE-627)NLM200372300 
035 |a (NLM)20716500 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ranganathan, Ananth  |e verfasserin  |4 aut 
245 1 0 |a Online sparse Gaussian process regression and its applications 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.04.2011 
500 |a Date Revised 14.01.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new Gaussian process (GP) inference algorithm, called online sparse matrix Gaussian processes (OSMGP), and demonstrate its merits by applying it to the problems of head pose estimation and visual tracking. The OSMGP is based upon the observation that for kernels with local support, the Gram matrix is typically sparse. Maintaining and updating the sparse Cholesky factor of the Gram matrix can be done efficiently using Givens rotations. This leads to an exact, online algorithm whose update time scales linearly with the size of the Gram matrix. Further, we provide a method for constant time operation of the OSMGP using matrix downdates. The downdates maintain the Cholesky factor at a constant size by removing certain rows and columns corresponding to discarded training examples. We demonstrate that, using these matrix downdates, online hyperparameter estimation can be included at cost linear in the number of total training examples. We describe a robust appearance-based head pose estimation system based upon the OSMGP. Numerous experiments and comparisons with existing methods using a large dataset system demonstrate the efficiency and accuracy of our system. Further, to showcase the applicability of OSMGP to a wide variety of problems, we also describe a regression-based visual tracking method. Experiments show that our OSMGP algorithm generalizes well using online learning 
650 4 |a Journal Article 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
700 1 |a Ho, Jeffrey  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 2 vom: 15. Feb., Seite 391-404  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:2  |g day:15  |g month:02  |g pages:391-404 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2066984  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 2  |b 15  |c 02  |h 391-404