Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells

Ordered multimodal porous carbon (OMPC) was explored as a counter electrode in ruthenium complex dye-sensitized solar cells (DSSCs) and CdSe quantum-dot solar cells (QDSCs). The unique structural characteristics such as large surface area and well-developed three-dimensional (3-D) interconnected ord...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 16 vom: 17. Aug., Seite 13644-9
1. Verfasser: Fan, Sheng-Qiang (VerfasserIn)
Weitere Verfasser: Fang, Baizeng, Kim, Jung Ho, Jeong, Banseok, Kim, Chulwoo, Yu, Jong-Sung, Ko, Jaejung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Ordered multimodal porous carbon (OMPC) was explored as a counter electrode in ruthenium complex dye-sensitized solar cells (DSSCs) and CdSe quantum-dot solar cells (QDSCs). The unique structural characteristics such as large surface area and well-developed three-dimensional (3-D) interconnected ordered macropore framework with open mesopores embedded in the macropore walls make the OMPC electrodes have high catalytic activities and fast mass transfer kinetics toward both triiodide/iodide and polysulfide electrolytes. The efficiency (ca. 8.67%) of the OMPC based DSSC is close to that (ca. 9.34%) of the Pt based one. Most importantly, the QDSC employing OMPC material presents a high efficiency of up to 4.36%, which is significantly higher than those of Pt- and activated carbon based solar cells, ca. 2.29% and 3.30%, respectively
Beschreibung:Date Completed 22.11.2010
Date Revised 10.08.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1019873