Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy

New medical imaging contrast agents that permit multiple imaging and therapy applications using a single agent can result in more accurate diagnosis and local treatment of diseased tissue. Solid nanoparticles (NPs) (5-150 nm in size) have emerged as promising imaging and therapy agents, as have micr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 17 vom: 07. Sept., Seite 13855-60
1. Verfasser: Seo, Minseok (VerfasserIn)
Weitere Verfasser: Gorelikov, Ivan, Williams, Ross, Matsuura, Naomi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Fluorocarbons
Beschreibung
Zusammenfassung:New medical imaging contrast agents that permit multiple imaging and therapy applications using a single agent can result in more accurate diagnosis and local treatment of diseased tissue. Solid nanoparticles (NPs) (5-150 nm in size) have emerged as promising imaging and therapy agents, as have micrometer-scale, perfluorocarbon gas-filled microbubbles (MBs) used in patients as intravascular ultrasound contrast agents. We propose that the modular combination of small, solid NPs and larger, highly compressible MBs into a single agent is an effective way to attain the desired complementary and hybrid properties of two very different agents. Presented here is a new strategy for the simple and robust incorporation of various medical NPs with monodisperse MBs based upon the controlled pH-based regulation of the electrostatic attraction between NPs and the MB shell. Using this simple approach, microfluidic-generated, protein-lipid-coated, perfluorobutane MBs (with size control down to 3 microm) were incorporated with silica-coated NPs, including CdSe/ZnS quantum dots, gold nanorods, iron oxide NPs, and Gd-loaded mesoporous silica NPs. The silica interface permits NP inclusion within MBs to be independent of NP composition, morphology, and size. Significantly, the NP-incorporated MBs (NP-MBs) diluted in saline were detectable using low-pressure ultrasound, and the monodisperse MB platform can be produced at high-throughput, sufficient for in vivo usage (10(6) MB/sec). The modular synthesis of a variety of NP-MBs can facilitate flexible, user-defined, multifunctional imaging and therapy agents tailored for specific applications and disease types
Beschreibung:Date Completed 27.12.2010
Date Revised 02.09.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la102272d