Implementation of an algorithm based on the Runge-Kutta-Fehlberg technique and the potential energy as a reaction coordinate to locate intrinsic reaction paths

(c) 2010 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 31(2010), 13 vom: 01. Okt., Seite 2510-25
1. Verfasser: Aguilar-Mogas, Antoni (VerfasserIn)
Weitere Verfasser: Giménez, Xavier, Bofill, Josep Maria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM199779422
003 DE-627
005 20231223215312.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21539  |2 doi 
028 5 2 |a pubmed24n0666.xml 
035 |a (DE-627)NLM199779422 
035 |a (NLM)20652993 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Aguilar-Mogas, Antoni  |e verfasserin  |4 aut 
245 1 0 |a Implementation of an algorithm based on the Runge-Kutta-Fehlberg technique and the potential energy as a reaction coordinate to locate intrinsic reaction paths 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.01.2011 
500 |a Date Revised 23.07.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2010 Wiley Periodicals, Inc. 
520 |a The intrinsic reaction coordinate (IRC) curve is used widely as a representation of the Reaction Path and can be parameterized taking the potential energy as a reaction coordinate (Aguilar-Mogas et al., J Chem Phys 2008, 128, 104102). Taking this parameterization and its variational nature, an algorithm is proposed that permits to locate this type of curve joining two points from an arbitrary curve that joints the same initial and final points. The initial and final points are minima of the potential energy surface associated with the geometry of reactants and products of the reaction whose mechanism is under study. The arbitrary curves are moved toward the IRC curve by a Runge-Kutta-Fehlberg technique. This technique integrates a set of differential equations resulting from the minimization until value zero of the line integral over the Weierstrass E-function. The Weierstrass E-function is related with the second variation in the theory of calculus of variations. The algorithm has been proved in real chemical systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Giménez, Xavier  |e verfasserin  |4 aut 
700 1 |a Bofill, Josep Maria  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 31(2010), 13 vom: 01. Okt., Seite 2510-25  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:31  |g year:2010  |g number:13  |g day:01  |g month:10  |g pages:2510-25 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21539  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2010  |e 13  |b 01  |c 10  |h 2510-25