Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics

Normal mode analysis (NMA) with coarse-grained model, such as elastic network model (ENM), has allowed the quantitative understanding of protein dynamics. As the protein size is increased, there emerges the expensive computational process to find the dynamically important low-frequency normal modes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 32(2011), 1 vom: 15. Jan., Seite 161-9
1. Verfasser: Kim, Jae In (VerfasserIn)
Weitere Verfasser: Na, Sungsoo, Eom, Kilho
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins
LEADER 01000naa a22002652 4500
001 NLM199708150
003 DE-627
005 20231223215153.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21613  |2 doi 
028 5 2 |a pubmed24n0666.xml 
035 |a (DE-627)NLM199708150 
035 |a (NLM)20645300 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jae In  |e verfasserin  |4 aut 
245 1 0 |a Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.03.2011 
500 |a Date Revised 18.11.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Normal mode analysis (NMA) with coarse-grained model, such as elastic network model (ENM), has allowed the quantitative understanding of protein dynamics. As the protein size is increased, there emerges the expensive computational process to find the dynamically important low-frequency normal modes due to diagonalization of massive Hessian matrix. In this study, we have provided the domain decomposition-based structural condensation method that enables the efficient computations on low-frequency motions. Specifically, our coarse-graining method is established by coupling between model condensation (MC; Eom et al., J Comput Chem 2007, 28, 1400) and component mode synthesis (Kim et al., J Chem Theor Comput 2009, 5, 1931). A protein structure is first decomposed into substructural units, and then each substructural unit is coarse-grained by MC. Once the NMA is implemented to coarse-grained substructural units, normal modes and natural frequencies for each coarse-grained substructural unit are assembled by using geometric constraints to provide the normal modes and natural frequencies for whole protein structure. It is shown that our coarse-graining method enhances the computational efficiency for analysis of large protein complexes. It is clearly suggested that our coarse-graining method provides the B-factors of 100 large proteins, quantitatively comparable with those obtained from original NMA, with computational efficiency. Moreover, the collective behaviors and/or the correlated motions for model proteins are well delineated by our suggested coarse-grained models, quantitatively comparable with those computed from original NMA. It is implied that our coarse-grained method enables the computationally efficient studies on conformational dynamics of large protein complex 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Proteins  |2 NLM 
700 1 |a Na, Sungsoo  |e verfasserin  |4 aut 
700 1 |a Eom, Kilho  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 32(2011), 1 vom: 15. Jan., Seite 161-9  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:32  |g year:2011  |g number:1  |g day:15  |g month:01  |g pages:161-9 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21613  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2011  |e 1  |b 15  |c 01  |h 161-9