Coupled prediction classification for robust visual tracking

This paper addresses the problem of robust template tracking in image sequences. Our work falls within the discriminative framework in which the observations at each frame yield direct probabilistic predictions of the state of the target. Our primary contribution is that we explicitly address the pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 9 vom: 15. Sept., Seite 1553-67
1. Verfasser: Patras, Ioannis (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM199615934
003 DE-627
005 20231223215010.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.175  |2 doi 
028 5 2 |a pubmed24n0665.xml 
035 |a (DE-627)NLM199615934 
035 |a (NLM)20634552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
245 1 0 |a Coupled prediction classification for robust visual tracking 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.12.2010 
500 |a Date Revised 16.07.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the problem of robust template tracking in image sequences. Our work falls within the discriminative framework in which the observations at each frame yield direct probabilistic predictions of the state of the target. Our primary contribution is that we explicitly address the problem that the prediction accuracy for different observations varies, and in some cases, can be very low. To this end, we couple the predictor to a probabilistic classifier which, when trained, can determine the probability that a new observation can accurately predict the state of the target (that is, determine the "relevance" or "reliability" of the observation in question). In the particle filtering framework, we derive a recursive scheme for maintaining an approximation of the posterior probability of the state in which multiple observations can be used and their predictions moderated by their corresponding relevance. In this way, the predictions of the "relevant" observations are emphasized, while the predictions of the "irrelevant" observations are suppressed. We apply the algorithm to the problem of 2D template tracking and demonstrate that the proposed scheme outperforms classical methods for discriminative tracking both in the case of motions which are large in magnitude and also for partial occlusions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 9 vom: 15. Sept., Seite 1553-67  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:9  |g day:15  |g month:09  |g pages:1553-67 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.175  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 9  |b 15  |c 09  |h 1553-67