Controlled assembly of protein in glass capillary

By means of a slow drying process and the control of surface charge characteristics, protein stripe patterns were readily prepared on the luminal surface of a capillary. We systematically studied the effects of surface properties, pH, and protein concentration on pattern formation using optical micr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 15 vom: 03. Aug., Seite 12803-9
1. Verfasser: Lin, Yuan (VerfasserIn)
Weitere Verfasser: Su, Zhaohui, Balizan, Elizabeth, Niu, Zhongwei, Wang, Qian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Proteins
Beschreibung
Zusammenfassung:By means of a slow drying process and the control of surface charge characteristics, protein stripe patterns were readily prepared on the luminal surface of a capillary. We systematically studied the effects of surface properties, pH, and protein concentration on pattern formation using optical microscopy, atomic force microscopy, and quartz crystal microbalance measurement. By balancing these parameters, a broad selection of proteins could be assembled within a capillary with well-defined stripe patterns. Neutravidin, one of the model proteins, was specifically chosen to demonstrate the bioactivity retained through the assembly process by interaction with fluorescently labeled biotin motifs. This technique therefore offers a facile approach for patterning proteins and other biomacromolecules in capillary tubes
Beschreibung:Date Completed 04.11.2010
Date Revised 29.07.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1017888