Designable biointerfaces using vapor-based reactive polymers
Functionalized poly(p-xylylenes) constitute a versatile class of reactive polymers that can be prepared in a solventless process via chemical vapor deposition (CVD) polymerization. The resulting ultrathin coatings are typically pinhole-free and can be conformally deposited onto a wide range of subst...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 27(2011), 1 vom: 04. Jan., Seite 34-48 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Review Biological Products Polymers Xylenes poly(p-xylylene) |
Zusammenfassung: | Functionalized poly(p-xylylenes) constitute a versatile class of reactive polymers that can be prepared in a solventless process via chemical vapor deposition (CVD) polymerization. The resulting ultrathin coatings are typically pinhole-free and can be conformally deposited onto a wide range of substrates and materials. More importantly, appropriately selected functional groups can serve as anchoring sites for tailoring biointerface properties via the immobilization of biomolecules. In this article, controlled surface chemistries are outlined that use functionalized poly(p-xylylenes) as reactive coatings, including alkyne-functionalized coatings for Huisgen 1,3-dipolar cycloaddition reactions or aldehyde-functionalized coatings. The reactive coatings technology provides flexible access to a range of different surface chemistries, enabling a broad range of potential applications in microfluidics, medical device coatings, and biotechnology. In this feature article, we will highlight recent progress in vapor-based reactive coatings and will discuss potential benefits and current limitations |
---|---|
Beschreibung: | Date Completed 12.04.2011 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la101623n |