|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM198943830 |
003 |
DE-627 |
005 |
20231223213701.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2010.03338.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0663.xml
|
035 |
|
|
|a (DE-627)NLM198943830
|
035 |
|
|
|a (NLM)20561202
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kulmatiski, Andrew
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.01.2011
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a • As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Deuterium Oxide
|2 NLM
|
650 |
|
7 |
|a J65BV539M3
|2 NLM
|
700 |
1 |
|
|a Beard, Karen H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Verweij, Richard J T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a February, Edmund C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 188(2010), 1 vom: 01. Okt., Seite 199-209
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:188
|g year:2010
|g number:1
|g day:01
|g month:10
|g pages:199-209
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2010.03338.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 188
|j 2010
|e 1
|b 01
|c 10
|h 199-209
|