Layered graph matching with composite cluster sampling

This paper presents a framework of layered graph matching for integrating graph partition and matching. The objective is to find an unknown number of corresponding graph structures in two images. We extract discriminative local primitives from both images and construct a candidacy graph whose vertic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 8 vom: 15. Aug., Seite 1426-42
1. Verfasser: Lin, Liang (VerfasserIn)
Weitere Verfasser: Liu, Xiaobai, Zhu, Song-Chun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM198921470
003 DE-627
005 20231223213634.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.150  |2 doi 
028 5 2 |a pubmed24n0663.xml 
035 |a (DE-627)NLM198921470 
035 |a (NLM)20558875 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Liang  |e verfasserin  |4 aut 
245 1 0 |a Layered graph matching with composite cluster sampling 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.09.2010 
500 |a Date Revised 18.06.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a framework of layered graph matching for integrating graph partition and matching. The objective is to find an unknown number of corresponding graph structures in two images. We extract discriminative local primitives from both images and construct a candidacy graph whose vertices are matching candidates (i.e., a pair of primitives) and whose edges are either negative for mutual exclusion or positive for mutual consistence. Then we pose layered graph matching as a multicoloring problem on the candidacy graph and solve it using a composite cluster sampling algorithm. This algorithm assigns some vertices into a number of colors, each being a matched layer, and turns off all the remaining candidates. The algorithm iterates two steps: 1) Sampling the positive and negative edges probabilistically to form a composite cluster, which consists of a few mutually conflicting connected components (CCPs) in different colors and 2) assigning new colors to these CCPs with consistence and exclusion relations maintained, and the assignments are accepted by the Markov Chain Monte Carlo (MCMC) mechanism to preserve detailed balance. This framework demonstrates state-of-the-art performance on several applications, such as multi-object matching with large motion, shape matching and retrieval, and object localization in cluttered background 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
700 1 |a Zhu, Song-Chun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 8 vom: 15. Aug., Seite 1426-42  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:8  |g day:15  |g month:08  |g pages:1426-42 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 8  |b 15  |c 08  |h 1426-42