Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling
Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 57(2010), 6 vom: 02. Juni, Seite 1383-95 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused by the stress-dependent boundary conditions at the delamination interfaces of a circular defect is also simulated by a 3-D second-order, finite-difference, staggered-grid model (displacement-stress formulation). Both the experimental and simulated data reveal an asymmetric motion of the layer above the delamination, which acts as a membrane vibrating with enhanced displacement amplitude around a finite offset displacement. The spectrum of the membrane motion is enriched with clapping-induced harmonics of the excitation frequency. In case of a sufficiently thin and soft membrane, the simulations reveal clear modal behavior at sub-harmonic frequencies caused by inelastic clapping |
---|---|
Beschreibung: | Date Completed 31.08.2010 Date Revised 10.06.2010 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2010.1557 |