Theoretical framework for nanoparticle reactivity as a function of aggregation state

Theory is developed that relates the reactivity of nanoparticles to the structure of aggregates they may form in suspensions. This theory is applied to consider the case of reactive oxygen species (ROS) generation by photosensitization of C(60) fullerenes. Variations in aggregate structure and size...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 13 vom: 06. Juli, Seite 11170-5
1. Verfasser: Hotze, Ernest M (VerfasserIn)
Weitere Verfasser: Bottero, Jean-Yves, Wiesner, Mark R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM198627114
003 DE-627
005 20231223213102.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1021/la9046963  |2 doi 
028 5 2 |a pubmed24n0662.xml 
035 |a (DE-627)NLM198627114 
035 |a (NLM)20527955 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hotze, Ernest M  |e verfasserin  |4 aut 
245 1 0 |a Theoretical framework for nanoparticle reactivity as a function of aggregation state 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2010 
500 |a Date Revised 30.06.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Theory is developed that relates the reactivity of nanoparticles to the structure of aggregates they may form in suspensions. This theory is applied to consider the case of reactive oxygen species (ROS) generation by photosensitization of C(60) fullerenes. Variations in aggregate structure and size appear to account for an apparent paradox in ROS generation as calculated using values for the photochemical kinetics of fullerene (C(60)) and its hydroxylated derivative, fullerol (C(60)(OH)(22-24)) and assuming that structure varies between compact and fractal objects. A region of aggregation-suppressed ROS production is identified where interactions between the particles in compact aggregates dominate the singlet oxygen production. Intrinsic kinetic properties dominate when aggregates are small and/or are characterized by low fractal dimensions. Pseudoglobal sensitivity analysis of model input variables verifies that fractal dimension, and by extension aggregation state, is the most sensitive model parameter when kinetics are well-known. This theoretical framework qualitatively predicts ROS production by fullerol suspensions 2 orders of magnitude higher compared with aggregates of largely undifferentiated C(60) despite nearly an order of magnitude higher quantum yield for the undifferentiated C(60) based on measurements for single molecules. Similar to C(60), other primary nanoparticles will exist as aggregates in many environmental and laboratory suspensions. This work provides a theoretical basis for understanding how the structure of nanoparticle aggregates may affect their reactivity 
650 4 |a Journal Article 
700 1 |a Bottero, Jean-Yves  |e verfasserin  |4 aut 
700 1 |a Wiesner, Mark R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 26(2010), 13 vom: 06. Juli, Seite 11170-5  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:26  |g year:2010  |g number:13  |g day:06  |g month:07  |g pages:11170-5 
856 4 0 |u http://dx.doi.org/10.1021/la9046963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 26  |j 2010  |e 13  |b 06  |c 07  |h 11170-5