Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet
We develop a novel patterning technique to create 3D patterns of micro and nanoparticle assembly via evaporative self-assembly based on the coffee-ring effect of an evaporating suspension. The principle of the technique is analyzed theoretically by the scaling analysis of main parameters of the proc...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 14 vom: 20. Juli, Seite 11690-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We develop a novel patterning technique to create 3D patterns of micro and nanoparticle assembly via evaporative self-assembly based on the coffee-ring effect of an evaporating suspension. The principle of the technique is analyzed theoretically by the scaling analysis of main parameters of the process and the scaling effect, the effect of the volume, the concentration of the suspension, and the effect of surface treatment on the patterning are studied. On the basis of the presented technique, we demonstrate that the patterns of 3D assembly of various sizes of microparticles (Silica), metal oxide nanoparticles (TiO(2), ZnO), and metallic nanoparticles (Ag) can be successfully generated by low-concentrated particle suspension (1.25-5 wt %) without additional sintering steps, and we also show the geometries of the patterns can be finely controlled by adjusting the parameters of the process |
---|---|
Beschreibung: | Date Completed 01.12.2010 Date Revised 29.07.2010 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la101110t |