Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions

The dielectrophoretic separation of individual metallic single-walled carbon nanotubes (SWNTs) from heterogeneous solutions and their simultaneous deposition between electrodes is achieved and confirmed by direct electric transport measurements. Out-of-solution guided parallel assembly of individual...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 13 vom: 06. Juli, Seite 10419-24
1. Verfasser: Burg, Brian R (VerfasserIn)
Weitere Verfasser: Schneider, Julian, Bianco, Vincenzo, Schirmer, Niklas C, Poulikakos, Dimos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The dielectrophoretic separation of individual metallic single-walled carbon nanotubes (SWNTs) from heterogeneous solutions and their simultaneous deposition between electrodes is achieved and confirmed by direct electric transport measurements. Out-of-solution guided parallel assembly of individual SWNTs was investigated for electric field frequencies between 1 and 200 MHz. At 200 MHz, 19 of the 22 deposited SWNTs (86%) displayed metallic behavior, whereas at lower frequencies the expected random growth distribution of 1/3 metallic SWNTs prevailed. A threshold separation frequency of 188 MHz is extracted from a surface-conductivity model, and a conductivity weighting factor is introduced to elucidate the separation frequency dependence. Low-frequency experiments and numerical simulations show that long-range nanotube transport is governed by hydrodynamic effects whereas local trapping is dominated by dielectrophoretic forces. The electrokinetic framework of dielectrophoresis in low-concentration solutions is thus provided and allows a deeper understanding of the underlying mechanisms in dielectrophoretic deposition processes for long and large-diameter SWNT-based low-resistance device integration
Beschreibung:Date Completed 30.09.2010
Date Revised 30.06.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1013158