Novel biocompatible DNA gel particles
Surfactants with the cationic functionality based on an amino acid structure have been used to prepare novel biocompatible devices for the controlled encapsulation and release of DNA. We report here the formation of DNA gel particles mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) wit...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 13 vom: 06. Juli, Seite 10606-13 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Surface-Active Agents DNA 9007-49-2 |
Zusammenfassung: | Surfactants with the cationic functionality based on an amino acid structure have been used to prepare novel biocompatible devices for the controlled encapsulation and release of DNA. We report here the formation of DNA gel particles mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) with two different single-chain amino acid-based surfactants: arginine-N-lauroyl amide dihydrochloride (ALA) and N(alpha)-lauroyl-arginine-methyl ester hydrochloride (LAM). The degree of DNA entrapment, the swelling/deswelling behavior, and the DNA release kinetics have been studied as a function of both the number of charges in the polar head of the amino acid-based surfactant and the secondary structure of the nucleic acid. Analysis of the data indicates a stronger interaction of ALA with DNA, compared with LAM, mainly attributed to the double charge carried by the former surfactant compared to the singly charged headgroup of the latter species. The stronger interaction with amphiphiles for ssDNA compared with dsDNA suggests the important role of hydrophobic interactions in DNA. Data on the microstructure of the complexes obtained from small-angle X-ray scattering (SAXS) of the particles strongly suggests a hexagonal packing. It was found that, the shorter the lattice parameter, the stronger the surfactant-DNA interaction and the slower the DNA release kinetics. Complexation and neutralization of DNA on the DNA gel particles was confirmed by agarose gel electrophoresis measurements |
---|---|
Beschreibung: | Date Completed 30.09.2010 Date Revised 30.06.2010 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la100818p |