|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM198351399 |
003 |
DE-627 |
005 |
20240315232159.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erq117
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1330.xml
|
035 |
|
|
|a (DE-627)NLM198351399
|
035 |
|
|
|a (NLM)20497970
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Xianshan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.09.2010
|
500 |
|
|
|a Date Revised 15.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Plant height (PH), a crucial trait related to yield potential in crop plants, is known to be typically quantitatively inherited. However, its full expression can be inhibited by a limited water supply. In this study, the genetic basis of the developmental behaviour of PH was assessed in a 150-line wheat (Triticum aestivum L.) doubled haploid population (Hanxuan 10 x Lumai 14) grown in 10 environments (year x site x water regime combinations) by unconditional and conditional quantitative trait locus (QTL) analyses in a mixed linear model. Genes that were expressed selectively during ontogeny were identified. No single QTL was continually active in all periods of PH growth, and QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the original point to the jointing stage) formed a foundation for PH development. Additive main effects (a effects), which were mostly expressed in S1|S0, were more important than epistatic main effects (aa effects) or QTL x environment interaction (QE) effects, suggesting that S1|S0 was the most significant development period affecting PH growth. A few QTLs, such as QPh.cgb-6B.7, showed high adaptability for water-limited environments. Many QTLs, including four A-QTLs (QPh.cgb-2D.1, QPh.cgb-4B.1, QPh.cgb-4D.1, and QPh.cgb-5A.7) coincident with previously identified reduced height (Rht) genes (Rht8, Rht1, Rht2, and Rht9), interacted with more than one other QTL, indicating that the genetic architecture underlying PH development is a network of genes with additive and epistatic effects. Therefore, based on multilocus combinations in S1|S0, superior genotypes were predicted for guiding improvements in breeding for PH
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
700 |
1 |
|
|a Wang, Zhenghang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Xiaoping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jing, Ruilian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 61(2010), 11 vom: 14. Juni, Seite 2923-37
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:61
|g year:2010
|g number:11
|g day:14
|g month:06
|g pages:2923-37
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erq117
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 61
|j 2010
|e 11
|b 14
|c 06
|h 2923-37
|