Reinterpreting the application of gabor filters as a manipulation of the margin in linear support vector machines

Linear filters are ubiquitously used as a preprocessing step for many classification tasks in computer vision. In particular, applying Gabor filters followed by a classification stage, such as a support vector machine (SVM), is now common practice in computer vision applications like face identity a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 7 vom: 09. Juli, Seite 1335-41
1. Verfasser: Ashraf, Ahmed Bilal (VerfasserIn)
Weitere Verfasser: Lucey, Simon, Chen, Tsuhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM198270208
003 DE-627
005 20231223212347.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.75  |2 doi 
028 5 2 |a pubmed24n0661.xml 
035 |a (DE-627)NLM198270208 
035 |a (NLM)20489236 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ashraf, Ahmed Bilal  |e verfasserin  |4 aut 
245 1 0 |a Reinterpreting the application of gabor filters as a manipulation of the margin in linear support vector machines 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.08.2010 
500 |a Date Revised 21.05.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Linear filters are ubiquitously used as a preprocessing step for many classification tasks in computer vision. In particular, applying Gabor filters followed by a classification stage, such as a support vector machine (SVM), is now common practice in computer vision applications like face identity and expression recognition. A fundamental problem occurs, however, with respect to the high dimensionality of the concatenated Gabor filter responses in terms of memory requirements and computational efficiency during training and testing. In this paper, we demonstrate how the preprocessing step of applying a bank of linear filters can be reinterpreted as manipulating the type of margin being maximized within the linear SVM. This new interpretation leads to sizable memory and computational advantages with respect to existing approaches. The reinterpreted formulation turns out to be independent of the number of filters, thereby allowing the examination of the feature spaces derived from arbitrarily large number of linear filters, a hitherto untestable prospect. Further, this new interpretation of filter banks gives new insights, other than the often cited biological motivations, into why the preprocessing of images with filter banks, like Gabor filters, improves classification performance 
650 4 |a Journal Article 
700 1 |a Lucey, Simon  |e verfasserin  |4 aut 
700 1 |a Chen, Tsuhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 7 vom: 09. Juli, Seite 1335-41  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:7  |g day:09  |g month:07  |g pages:1335-41 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.75  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 7  |b 09  |c 07  |h 1335-41