Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 61(2010), 10 vom: 15. Juni, Seite 2719-33
1. Verfasser: Quinet, Muriel (VerfasserIn)
Weitere Verfasser: Ndayiragije, Alexis, Lefèvre, Isabelle, Lambillotte, Béatrice, Dupont-Gillain, Christine C, Lutts, Stanley
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cations, Monovalent Ethylenes Plant Proteins RNA, Messenger Water 059QF0KO0R Spermine 2FZ7Y3VOQX mehr... Sodium Chloride 451W47IQ8X Malondialdehyde 4Y8F71G49Q ethylene 91GW059KN7 Sodium 9NEZ333N27 Potassium RWP5GA015D Spermidine U87FK77H25 Putrescine V10TVZ52E4
LEADER 01000caa a22002652c 4500
001 NLM198111282
003 DE-627
005 20250211135058.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erq118  |2 doi 
028 5 2 |a pubmed25n0660.xml 
035 |a (DE-627)NLM198111282 
035 |a (NLM)20472577 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Quinet, Muriel  |e verfasserin  |4 aut 
245 1 0 |a Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2010 
500 |a Date Revised 20.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Cations, Monovalent  |2 NLM 
650 7 |a Ethylenes  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a RNA, Messenger  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Spermine  |2 NLM 
650 7 |a 2FZ7Y3VOQX  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a ethylene  |2 NLM 
650 7 |a 91GW059KN7  |2 NLM 
650 7 |a Sodium  |2 NLM 
650 7 |a 9NEZ333N27  |2 NLM 
650 7 |a Potassium  |2 NLM 
650 7 |a RWP5GA015D  |2 NLM 
650 7 |a Spermidine  |2 NLM 
650 7 |a U87FK77H25  |2 NLM 
650 7 |a Putrescine  |2 NLM 
650 7 |a V10TVZ52E4  |2 NLM 
700 1 |a Ndayiragije, Alexis  |e verfasserin  |4 aut 
700 1 |a Lefèvre, Isabelle  |e verfasserin  |4 aut 
700 1 |a Lambillotte, Béatrice  |e verfasserin  |4 aut 
700 1 |a Dupont-Gillain, Christine C  |e verfasserin  |4 aut 
700 1 |a Lutts, Stanley  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 61(2010), 10 vom: 15. Juni, Seite 2719-33  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:61  |g year:2010  |g number:10  |g day:15  |g month:06  |g pages:2719-33 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erq118  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2010  |e 10  |b 15  |c 06  |h 2719-33