Almost isometric mesh parameterization through abstract domains

In this paper, we propose a robust, automatic technique to build a global hi-quality parameterization of a two-manifold triangular mesh. An adaptively chosen 2D domain of the parameterization is built as part of the process. The produced parameterization exhibits very low isometric distortion, becau...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 16(2010), 4 vom: 23. Juli, Seite 621-35
1. Verfasser: Pietroni, Nico (VerfasserIn)
Weitere Verfasser: Tarini, Marco, Cignoni, Paolo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we propose a robust, automatic technique to build a global hi-quality parameterization of a two-manifold triangular mesh. An adaptively chosen 2D domain of the parameterization is built as part of the process. The produced parameterization exhibits very low isometric distortion, because it is globally optimized to preserve both areas and angles. The domain is a collection of equilateral triangular 2D regions enriched with explicit adjacency relationships (it is abstract in the sense that no 3D embedding is necessary). It is tailored to minimize isometric distortion, resulting in excellent parameterization qualities, even when meshes with complex shape and topology are mapped into domains composed of a small number of large continuous regions. Moreover, this domain is, in turn, remapped into a collection of 2D square regions, unlocking many advantages found in quad-based domains (e.g., ease of packing). The technique is tested on a variety of cases, including challenging ones, and compares very favorably with known approaches. An open-source implementation is made available
Beschreibung:Date Completed 27.07.2010
Date Revised 14.05.2010
published: Print
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2009.96