The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement

We describe an immersed boundary method for problems of fluid-solute-structure interaction. The numerical scheme employs linearly implicit timestepping, allowing for the stable use of timesteps that are substantially larger than those permitted by an explicit method, and local mesh refinement, makin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 229(2010), 13 vom: 01. Juli, Seite 5208-5227
1. Verfasser: Lee, Pilhwa (VerfasserIn)
Weitere Verfasser: Griffith, Boyce E, Peskin, Charles S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM197940641
003 DE-627
005 20231223211649.0
007 tu
008 231223s2010 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0660.xml 
035 |a (DE-627)NLM197940641 
035 |a (NLM)20454540 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Pilhwa  |e verfasserin  |4 aut 
245 1 4 |a The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We describe an immersed boundary method for problems of fluid-solute-structure interaction. The numerical scheme employs linearly implicit timestepping, allowing for the stable use of timesteps that are substantially larger than those permitted by an explicit method, and local mesh refinement, making it feasible to resolve the steep gradients associated with the space charge layers as well as the chemical potential, which is used in our formulation to control the permeability of the membrane to the (possibly charged) solute. Low Reynolds number fluid dynamics are described by the time-dependent incompressible Stokes equations, which are solved by a cell-centered approximate projection method. The dynamics of the chemical species are governed by the advection-electrodiffusion equations, and our semi-implicit treatment of these equations results in a linear system which we solve by GMRES preconditioned via a fast adaptive composite-grid (FAC) solver. Numerical examples demonstrate the capabilities of this methodology, as well as its convergence properties 
650 4 |a Journal Article 
700 1 |a Griffith, Boyce E  |e verfasserin  |4 aut 
700 1 |a Peskin, Charles S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 229(2010), 13 vom: 01. Juli, Seite 5208-5227  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:229  |g year:2010  |g number:13  |g day:01  |g month:07  |g pages:5208-5227 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 229  |j 2010  |e 13  |b 01  |c 07  |h 5208-5227