Polyelectrolyte multilayers containing triblock copolymers of different charge ratio

Multilayers formed by the sodium salt of poly(4-styrenesulfonate), PSS, and triblock copolymers of the form PDMAEMA-PCL-PDMAEMA (PDMAEMA corresponding to poly[2-(N,N-dimethylamino)ethyl methacrylate), and PCL to poly(epsilon-caprolactone) have been built by layer-by-layer self-assembly from the aque...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 13 vom: 06. Juli, Seite 11494-502
1. Verfasser: Guzmán, Eduardo (VerfasserIn)
Weitere Verfasser: San Miguel, Verónica, Peinado, Carmen, Ortega, Francisco, Rubio, Ramón G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Multilayers formed by the sodium salt of poly(4-styrenesulfonate), PSS, and triblock copolymers of the form PDMAEMA-PCL-PDMAEMA (PDMAEMA corresponding to poly[2-(N,N-dimethylamino)ethyl methacrylate), and PCL to poly(epsilon-caprolactone) have been built by layer-by-layer self-assembly from the aqueous polyelectrolyte solutions. Two types of block copolymers have been used which differ on the type of the amino groups, either hydrochloride or quaternized. This leads to changes in the charge density of the chains for the same content of amino groups. The growth of the multilayers has been followed using dissipative quartz crystal microbalance and ellipsometry techniques. The results show that, independently of the conditions used in the assembling, the film thickness grows linearly with the number of layers. The comparison of the thickness values obtained from D-QCM and ellipsometry has allowed us to calculate the water content of the polymer film. The analysis of the D-QCM data also provides the shear modulus, whose values are typical of a rubber-like polymer system. The analysis of the mass adsorbed calculated by the ellipsometric measurements indicated that the nature of the charge compensation mechanism is extrinsic for all the studied systems, although the degree of extrinsic compensation is strongly dependent on the copolymer used and the concentration in solution. Finally, it was found that the adsorption kinetic of the layers is bimodal for all the films built. Even though the characteristic adsorption times depend on the specific copolymer used, no dependence on the number of layers has been found for a given multilayer
Beschreibung:Date Completed 30.09.2010
Date Revised 30.06.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la101043z