Hierarchical bayesian modeling of topics in time-stamped documents
We consider the problem of inferring and modeling topics in a sequence of documents with known publication dates. The documents at a given time are each characterized by a topic and the topics are drawn from a mixture model. The proposed model infers the change in the topic mixture weights as a func...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1998. - 32(2010), 6 vom: 02. Juni, Seite 996-1011
|
Auteur principal: |
Pruteanu-Malinici, Iulian
(Auteur) |
Autres auteurs: |
Ren, Lu,
Paisley, John,
Wang, Eric,
Carin, Lawrence |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2010
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |