Hierarchical bayesian modeling of topics in time-stamped documents

We consider the problem of inferring and modeling topics in a sequence of documents with known publication dates. The documents at a given time are each characterized by a topic and the topics are drawn from a mixture model. The proposed model infers the change in the topic mixture weights as a func...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 32(2010), 6 vom: 02. Juni, Seite 996-1011
Auteur principal: Pruteanu-Malinici, Iulian (Auteur)
Autres auteurs: Ren, Lu, Paisley, John, Wang, Eric, Carin, Lawrence
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article