Hierarchical bayesian modeling of topics in time-stamped documents

We consider the problem of inferring and modeling topics in a sequence of documents with known publication dates. The documents at a given time are each characterized by a topic and the topics are drawn from a mixture model. The proposed model infers the change in the topic mixture weights as a func...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 32(2010), 6 vom: 02. Juni, Seite 996-1011
1. Verfasser: Pruteanu-Malinici, Iulian (VerfasserIn)
Weitere Verfasser: Ren, Lu, Paisley, John, Wang, Eric, Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article