Rigid and articulated point registration with expectation conditional maximization

This paper addresses the issue of matching rigid and articulated shapes through probabilistic point registration. The problem is recast into a missing data framework where unknown correspondences are handled via mixture models. Adopting a maximum likelihood principle, we introduce an innovative EM-l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 3 vom: 01. März, Seite 587-602
1. Verfasser: Horaud, Radu (VerfasserIn)
Weitere Verfasser: Forbes, Florence, Yguel, Manuel, Dewaele, Guillaume, Zhang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM197629008
003 DE-627
005 20231223210959.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.94  |2 doi 
028 5 2 |a pubmed24n0659.xml 
035 |a (DE-627)NLM197629008 
035 |a (NLM)20421669 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Horaud, Radu  |e verfasserin  |4 aut 
245 1 0 |a Rigid and articulated point registration with expectation conditional maximization 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.06.2011 
500 |a Date Revised 21.04.2011 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the issue of matching rigid and articulated shapes through probabilistic point registration. The problem is recast into a missing data framework where unknown correspondences are handled via mixture models. Adopting a maximum likelihood principle, we introduce an innovative EM-like algorithm, namely, the Expectation Conditional Maximization for Point Registration (ECMPR) algorithm. The algorithm allows the use of general covariance matrices for the mixture model components and improves over the isotropic covariance case. We analyze in detail the associated consequences in terms of estimation of the registration parameters, and propose an optimal method for estimating the rotational and translational parameters based on semidefinite positive relaxation. We extend rigid registration to articulated registration. Robustness is ensured by detecting and rejecting outliers through the addition of a uniform component to the Gaussian mixture model at hand. We provide an in-depth analysis of our method and compare it both theoretically and experimentally with other robust methods for point registration 
650 4 |a Journal Article 
700 1 |a Forbes, Florence  |e verfasserin  |4 aut 
700 1 |a Yguel, Manuel  |e verfasserin  |4 aut 
700 1 |a Dewaele, Guillaume  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 3 vom: 01. März, Seite 587-602  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:3  |g day:01  |g month:03  |g pages:587-602 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.94  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 3  |b 01  |c 03  |h 587-602