Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops
Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and deve...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 61(2010), 8 vom: 15. Mai, Seite 2185-202 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Review |
Zusammenfassung: | Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed |
---|---|
Beschreibung: | Date Completed 10.08.2010 Date Revised 20.05.2010 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erq095 |