SamACO : variable sampling ant colony optimization algorithm for continuous optimization

An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discret...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 40(2010), 6 vom: 14. Dez., Seite 1555-66
1. Verfasser: Hu, Xiao-Min (VerfasserIn)
Weitere Verfasser: Zhang, Jun, Chung, Henry Shu-Hung, Li, Yun, Liu, Ou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM197153410
003 DE-627
005 20250211105803.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2010.2043094  |2 doi 
028 5 2 |a pubmed25n0657.xml 
035 |a (DE-627)NLM197153410 
035 |a (NLM)20371409 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Xiao-Min  |e verfasserin  |4 aut 
245 1 0 |a SamACO  |b variable sampling ant colony optimization algorithm for continuous optimization 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2011 
500 |a Date Revised 16.11.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Jun  |e verfasserin  |4 aut 
700 1 |a Chung, Henry Shu-Hung  |e verfasserin  |4 aut 
700 1 |a Li, Yun  |e verfasserin  |4 aut 
700 1 |a Liu, Ou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 40(2010), 6 vom: 14. Dez., Seite 1555-66  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:40  |g year:2010  |g number:6  |g day:14  |g month:12  |g pages:1555-66 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2010.2043094  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2010  |e 6  |b 14  |c 12  |h 1555-66