|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM197136370 |
003 |
DE-627 |
005 |
20231223205932.0 |
007 |
tu |
008 |
231223s2010 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0657.xml
|
035 |
|
|
|a (DE-627)NLM197136370
|
035 |
|
|
|a (NLM)20369564
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vergili, Ilda
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Column studies for the adsorption of cationic surfactant onto an organic polymer resin and a granular activated carbon
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.05.2010
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Adsorption beds containing granular activated carbon and organic polymer resin are used widely to remove organic pollutants from wastewaters and water streams. Adsorption polymers are becoming alternatives to activated carbon for removal of surfactants by adsorption techniques. This study investigated the adsorption characteristics of cetyl trimethylammonium bromide (CTAB) as a cationic surfactant for selected concentrations below and above critical micelle concentration (CMC). A series of column tests were performed to determine the breakthrough curves by using two different adsorbents: (1) Hydraffin CC 8 x 30 as a commercial granular activated carbon (GAC) and (2) Lewatit VPOC 1064 MD PH as a commercial organic polymer resin. In the experiments, the volumetric flow rate was maintained at 10.5 mL/min (approximately 2 m3/ m2 x h). Loading of adsorbents was continued until breakthrough was 10% of the feed concentration. The breakthrough took place at 488 bed volume (BV) below CMC (C0 = 40 mg/L) and 39 BV above CMC (C0 = 400 mg/ L) onto GAC. The organic polymer resin, however, showed a higher adsorption capacity than GAC (1412 BV below CMC and 287 BV above CMC). From the Logit method, the value of adsorption rate coefficient (K) and adsorption capacity coefficient (N) were obtained
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Cetrimonium Compounds
|2 NLM
|
650 |
|
7 |
|a Lewatit VPOC 1064 MD PH
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Surface-Active Agents
|2 NLM
|
650 |
|
7 |
|a Charcoal
|2 NLM
|
650 |
|
7 |
|a 16291-96-6
|2 NLM
|
650 |
|
7 |
|a Cetrimonium
|2 NLM
|
650 |
|
7 |
|a Z7FF1XKL7A
|2 NLM
|
700 |
1 |
|
|a Kaya, Yasemin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gönder, Zeren Beril
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Barlas, Hulusi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 82(2010), 3 vom: 25. März, Seite 209-15
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:82
|g year:2010
|g number:3
|g day:25
|g month:03
|g pages:209-15
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 82
|j 2010
|e 3
|b 25
|c 03
|h 209-15
|