Synthesis and characterization of poly-L-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry

Polypeptide polymer-grafted silica nanoparticles are of considerable interest because the ordered secondary structure of the polypeptide grafts imparts novel functional properties onto the nanoparticle composite. The synthesis of poly-L-lysine-grafted silica nanoparticles would be of particular inte...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 8 vom: 20. Apr., Seite 5772-81
1. Verfasser: Kar, Mrityunjoy (VerfasserIn)
Weitere Verfasser: Vijayakumar, P S, Prasad, B L V, Sen Gupta, Sayam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Polymers Polylysine 25104-18-1 Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Polypeptide polymer-grafted silica nanoparticles are of considerable interest because the ordered secondary structure of the polypeptide grafts imparts novel functional properties onto the nanoparticle composite. The synthesis of poly-L-lysine-grafted silica nanoparticles would be of particular interest because the high density of cationic charges on the surface could lead to many applications such as gene delivery and antimicrobial agents. In this work, we have developed a "grafting-to" approach using a combination of NCA polymerization and "click chemistry" to synthesize poly-L-lysine-grafted silica nanoparticles with a high graft density of 1 chain/nm(2). The covalent attachment of poly-L-lysine to silica nanoparticles (PLL-silica) was confirmed using a variety of techniques such as (13)C CP MAS NMR, TGA, and IR. This methodology was then extended to graft poly-L-lysine-b-poly-L-leucine copolymer (PLL-b-PLLeu-silica) and poly-L-benzylglutamate (PLBG-silica) onto silica nanoparticles. All of these polypeptide-grafted nanoparticles show interesting aggregation properties in solution. The efficacy of PLL-silica and PLL-b-PLLeu-silica as antimicrobial agents was tested on both gram-negative E. coli and gram-positive Bacillus subtilis
Beschreibung:Date Completed 01.07.2010
Date Revised 13.04.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la903595x