Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization

Although significant efforts have been made in developing nonnegative blind source separation techniques, accurate separation of positive yet dependent sources remains a challenging task. In this paper, a joint correlation function of multiple signals is proposed to reveal and confirm that the obser...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 32(2010), 5 vom: 18. Mai, Seite 875-88
Auteur principal: Wang, Fa-Yu (Auteur)
Autres auteurs: Chi, Chong-Yung, Chan, Tsung-Han, Wang, Yue
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM19648233X
003 DE-627
005 20250211093058.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.72  |2 doi 
028 5 2 |a pubmed25n0655.xml 
035 |a (DE-627)NLM19648233X 
035 |a (NLM)20299711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Fa-Yu  |e verfasserin  |4 aut 
245 1 0 |a Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.06.2010 
500 |a Date Revised 19.03.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Although significant efforts have been made in developing nonnegative blind source separation techniques, accurate separation of positive yet dependent sources remains a challenging task. In this paper, a joint correlation function of multiple signals is proposed to reveal and confirm that the observations after nonnegative mixing would have higher joint correlation than the original unknown sources. Accordingly, a new nonnegative least-correlated component analysis (n/LCA) method is proposed to design the unmixing matrix by minimizing the joint correlation function among the estimated nonnegative sources. In addition to a closed-form solution for unmixing two mixtures of two sources, the general algorithm of n/LCA for the multisource case is developed based on an iterative volume maximization (IVM) principle and linear programming. The source identifiability and required conditions are discussed and proven. The proposed n/LCA algorithm, denoted by n/LCA-IVM, is evaluated with both simulation data and real biomedical data to demonstrate its superior performance over several existing benchmark methods 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chi, Chong-Yung  |e verfasserin  |4 aut 
700 1 |a Chan, Tsung-Han  |e verfasserin  |4 aut 
700 1 |a Wang, Yue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 32(2010), 5 vom: 18. Mai, Seite 875-88  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:5  |g day:18  |g month:05  |g pages:875-88 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.72  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 5  |b 18  |c 05  |h 875-88