Ricci flow for 3D shape analysis

Ricci flow is a powerful curvature flow method, which is invariant to rigid motion, scaling, isometric, and conformal deformations. We present the first application of surface Ricci flow in computer vision. Previous methods based on conformal geometry, which only handle 3D shapes with simple topolog...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 4 vom: 01. Apr., Seite 662-77
1. Verfasser: Zeng, Wei (VerfasserIn)
Weitere Verfasser: Samaras, Dimitris, Gu, Xianfeng David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM195742451
003 DE-627
005 20231223203333.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.201  |2 doi 
028 5 2 |a pubmed24n0653.xml 
035 |a (DE-627)NLM195742451 
035 |a (NLM)20224122 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Wei  |e verfasserin  |4 aut 
245 1 0 |a Ricci flow for 3D shape analysis 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.06.2010 
500 |a Date Revised 12.03.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Ricci flow is a powerful curvature flow method, which is invariant to rigid motion, scaling, isometric, and conformal deformations. We present the first application of surface Ricci flow in computer vision. Previous methods based on conformal geometry, which only handle 3D shapes with simple topology, are subsumed by the Ricci flow-based method, which handles surfaces with arbitrary topology. We present a general framework for the computation of Ricci flow, which can design any Riemannian metric by user-defined curvature. The solution to Ricci flow is unique and robust to noise. We provide implementation details for Ricci flow on discrete surfaces of either euclidean or hyperbolic background geometry. Our Ricci flow-based method can convert all 3D problems into 2D domains and offers a general framework for 3D shape analysis. We demonstrate the applicability of this intrinsic shape representation through standard shape analysis problems, such as 3D shape matching and registration, and shape indexing. Surfaces with large nonrigid anisotropic deformations can be registered using Ricci flow with constraints of feature points and curves. We show how conformal equivalence can be used to index shapes in a 3D surface shape space with the use of Teichmüller space coordinates. Experimental results are shown on 3D face data sets with large expression deformations and on dynamic heart data 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Samaras, Dimitris  |e verfasserin  |4 aut 
700 1 |a Gu, Xianfeng David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 4 vom: 01. Apr., Seite 662-77  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:4  |g day:01  |g month:04  |g pages:662-77 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.201  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 4  |b 01  |c 04  |h 662-77