Surface electrochemistry of mesoporous silicas as a key factor in the design of tailored delivery devices

The fundamental mechanisms of biologically active molecule adsorption and release from ordered mesoporous silica are discussed in terms of the variation of surface electrochemistry after functionalization. Specifically, ordered mesoporous SBA-15 has been grafted with aminopropyl, etilenediamine, pho...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 26(2010), 7 vom: 06. Apr., Seite 5038-49
1. Verfasser: Nieto, Alejandra (VerfasserIn)
Weitere Verfasser: Colilla, Montserrat, Balas, Francisco, Vallet-Regí, María
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't SBA-15 Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:The fundamental mechanisms of biologically active molecule adsorption and release from ordered mesoporous silica are discussed in terms of the variation of surface electrochemistry after functionalization. Specifically, ordered mesoporous SBA-15 has been grafted with aminopropyl, etilenediamine, phosphatoethyl, propyl methacrylate, and carboxylic acid groups at different degrees of functionalization. To test the molecular adsorption and release features, three molecules of clinical interest have been selected, namely, antiresorptive zoledronic acid, amino acid L-tryptophan, and protein bovine serum albumin. Molecular loading and delivery aspects have been studied by emphasizing the host-guest interactions, which determine the adsorption and release behavior. It has been found that careful control of surface electrochemistry by functionalization determines the bioactive molecule adsorption whereas the release can be mainly thought of as a diffusion matter dependent on the surface area and molecule size. This enhanced approach opens up new ways to optimize molecule loading for specific clinical needs
Beschreibung:Date Completed 21.06.2010
Date Revised 30.03.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la904820k