Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery

This paper studies a new Bayesian unmixing algorithm for hyperspectral images. Each pixel of the image is modeled as a linear combination of so-called endmembers. These endmembers are supposed to be random in order to model uncertainties regarding their knowledge. More precisely, we model endmembers...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 6 vom: 07. Juni, Seite 1403-13
1. Verfasser: Eches, Olivier (VerfasserIn)
Weitere Verfasser: Dobigeon, Nicolas, Mailhes, Corinne, Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper studies a new Bayesian unmixing algorithm for hyperspectral images. Each pixel of the image is modeled as a linear combination of so-called endmembers. These endmembers are supposed to be random in order to model uncertainties regarding their knowledge. More precisely, we model endmembers as Gaussian vectors whose means have been determined using an endmember extraction algorithm such as the famous N-finder (N-FINDR) or Vertex Component Analysis (VCA) algorithms. This paper proposes to estimate the mixture coefficients (referred to as abundances) using a Bayesian algorithm. Suitable priors are assigned to the abundances in order to satisfy positivity and additivity constraints whereas conjugate priors are chosen for the remaining parameters. A hybrid Gibbs sampler is then constructed to generate abundance and variance samples distributed according to the joint posterior of the abundances and noise variances. The performance of the proposed methodology is evaluated by comparison with other unmixing algorithms on synthetic and real images
Beschreibung:Date Completed 29.11.2010
Date Revised 23.07.2010
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2010.2042993