Characteristic IR C=C stretch enhancement in monolayers by nonconjugated, noncumulated unsaturated bonds

Control over and understanding of single-molecule covalent coatings becomes increasingly important in tailoring surfaces during the fabrication of nanoscale electrical or optical elements, such as organic field-effect transistors and light-emitting devices as well as microelectromechanical systems a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 7 vom: 06. Apr., Seite 4594-7
1. Verfasser: Lee, Michael V (VerfasserIn)
Weitere Verfasser: Enders, Dominik, Nagao, Tadaaki, Ariga, Katsuhiko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Control over and understanding of single-molecule covalent coatings becomes increasingly important in tailoring surfaces during the fabrication of nanoscale electrical or optical elements, such as organic field-effect transistors and light-emitting devices as well as microelectromechanical systems as the relevant feature sizes decrease. In this work, we develop a model based on IR spectra from public databases and DFT calculations that can be used to semiquantitatively assess the level of double bonds in monolayer coatings. We use the model to show the enhancement of the C=C vibrational mode due to silicon substitution and also from additional unsaturated bonds. Simple models for other functional groups in organic monolayers could be produced similarly
Beschreibung:Date Completed 21.06.2010
Date Revised 30.03.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la1001418