Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives

Highly ordered superlattices assembled from transition metal oxide/sulfide submicrometer particles are difficult to prepare due to lack of monodisperse primary building blocks. In this work, we have successfully synthesized monodisperse Cu(2)O spheres with diameters in the submicrometer regime of 13...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 8 vom: 20. Apr., Seite 5963-70
1. Verfasser: Pang, Maolin (VerfasserIn)
Weitere Verfasser: Zeng, Hua Chun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Highly ordered superlattices assembled from transition metal oxide/sulfide submicrometer particles are difficult to prepare due to lack of monodisperse primary building blocks. In this work, we have successfully synthesized monodisperse Cu(2)O spheres with diameters in the submicrometer regime of 130-135 nm. Using the as-prepared Cu(2)O spheres as solid precursor, uniform hollow CuS and CuSe derivatives have also been synthesized in solution media. More importantly, a range of two-dimensional and three-dimensional superlattices of Cu(2)O, CuS, and CuSe solid/hollow spheres have been assembled for the first time. Without assistance of conventional sacrificing solid templates, the degree of ordering achieved in these superlattices is comparable to those reported for well-studied silica and polystyrene beads. The realization of these self-assembled superlattices may provide a new way of thin film design and fabrication for this class of photosensitive semiconducting materials using their prefabricated building blocks
Beschreibung:Date Completed 01.07.2010
Date Revised 13.04.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la904292t