Novel delay-dependent robust stability analysis for switched neutral-type neural networks with time-varying delays via SC technique

This paper studies a class of new neural networks referred to as switched neutral-type neural networks (SNTNNs) with time-varying delays, which combines switched systems with a class of neutral-type neural networks. The less conservative robust stability criteria for SNTNNs with time-varying delays...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 40(2010), 6 vom: 15. Dez., Seite 1480-91
1. Verfasser: Zhang, Huaguang (VerfasserIn)
Weitere Verfasser: Liu, Zhenwei, Huang, Guang-Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM195339673
003 DE-627
005 20250211072743.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2010.2040274  |2 doi 
028 5 2 |a pubmed25n0651.xml 
035 |a (DE-627)NLM195339673 
035 |a (NLM)20181544 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Huaguang  |e verfasserin  |4 aut 
245 1 0 |a Novel delay-dependent robust stability analysis for switched neutral-type neural networks with time-varying delays via SC technique 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2011 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper studies a class of new neural networks referred to as switched neutral-type neural networks (SNTNNs) with time-varying delays, which combines switched systems with a class of neutral-type neural networks. The less conservative robust stability criteria for SNTNNs with time-varying delays are proposed by using a new Lyapunov-Krasovskii functional and a novel series compensation (SC) technique. Based on the new functional, SNTNNs with fast-varying neutral-type delay (the derivative of delay is more than one) is first considered. The benefit brought by employing the SC technique is that some useful negative definite elements can be included in stability criteria, which are generally ignored in the estimation of the upper bound of derivative of Lyapunov-Krasovskii functional in literature. Furthermore, the criteria proposed in this paper are also effective and less conservative in switched recurrent neural networks which can be considered as special cases of SNTNNs. The simulation results based on several numerical examples demonstrate the effectiveness of the proposed criteria 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Zhenwei  |e verfasserin  |4 aut 
700 1 |a Huang, Guang-Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 40(2010), 6 vom: 15. Dez., Seite 1480-91  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:40  |g year:2010  |g number:6  |g day:15  |g month:12  |g pages:1480-91 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2010.2040274  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2010  |e 6  |b 15  |c 12  |h 1480-91