Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus

Copyright (c) 2010 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 167(2010), 11 vom: 15. Juli, Seite 870-8
1. Verfasser: Higa, Ataru (VerfasserIn)
Weitere Verfasser: Mori, Yuko, Kitamura, Yoshie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Barbiturates Cyanates Malonates Salicylamides antimycin 11118-72-2 Antimycin A 642-15-9 mehr... Dicumarol 7QID3E7BG7 salicylhydroxamic acid 8Q07182D0T malonic acid 9KX7ZMG0MK potassium cyanate G9C31TWN5M Riboflavin TLM2976OFR
LEADER 01000naa a22002652 4500
001 NLM195338316
003 DE-627
005 20231223202559.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2010.01.011  |2 doi 
028 5 2 |a pubmed24n0651.xml 
035 |a (DE-627)NLM195338316 
035 |a (NLM)20181408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Higa, Ataru  |e verfasserin  |4 aut 
245 1 0 |a Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.08.2010 
500 |a Date Revised 03.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright (c) 2010 Elsevier GmbH. All rights reserved. 
520 |a Hyoscyamus albus hairy roots secrete riboflavin under Fe-deficient conditions. To determine whether this secretion was linked to an enhancement of respiration, both riboflavin secretion and the reduction of 2,3,5-triphenyltetrazolium chloride (TTC), as a measure of respiration activity, were determined in hairy roots cultured under Fe-deficient and Fe-replete conditions, with or without aeration. Appreciable TTC-reducing activity was detected at the root tips, at the bases of lateral roots and in internal tissues, notably the vascular system. TTC-reducing activity increased under Fe deficiency and this increase occurred in concert with riboflavin secretion and was more apparent under aeration. Riboflavin secretion was not apparent under Fe-replete conditions. In order to examine which elements of the mitochondrial electron transport chain might be involved, the effects of the respiratory inhibitors, barbiturate, dicoumarol, malonic acid, antimycin, KCN and salicylhydroxamic acid (SHAM) were investigated. Under Fe-deficient conditions, malonic acid affected neither root growth, TTC-reducing activity nor riboflavin secretion, whereas barbiturate and SHAM inhibited only root growth and TTC-reducing activity, respectively, and the other compounds variously inhibited growth and TTC-reducing activity. Riboflavin secretion was decreased, in concert with TTC-reducing activity, by dicoumarol, antimycin and KCN, but not by SHAM. In Fe-replete roots, all inhibitors which reduced riboflavin secretion in Fe-deficient roots showed somewhat different effects: notably, antimycin and KCN did not significantly inhibit TTC-reducing activity and the inhibition by dicoumarol was much weaker in Fe-replete roots. Combined treatment with KCN and SHAM also revealed that Fe-deficient and Fe-replete roots reduced TTC in different ways. A decrease in the Fe content of mitochondria in Fe-deficient roots was confirmed. Overall, the results suggest that, under conditions of Fe deficiency in H. albus hairy roots, the alternative NAD(P)H dehydrogenases, complex III and complex IV, but not the alternative oxidase, are actively involved both in respiration and in riboflavin secretion 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Barbiturates  |2 NLM 
650 7 |a Cyanates  |2 NLM 
650 7 |a Malonates  |2 NLM 
650 7 |a Salicylamides  |2 NLM 
650 7 |a antimycin  |2 NLM 
650 7 |a 11118-72-2  |2 NLM 
650 7 |a Antimycin A  |2 NLM 
650 7 |a 642-15-9  |2 NLM 
650 7 |a Dicumarol  |2 NLM 
650 7 |a 7QID3E7BG7  |2 NLM 
650 7 |a salicylhydroxamic acid  |2 NLM 
650 7 |a 8Q07182D0T  |2 NLM 
650 7 |a malonic acid  |2 NLM 
650 7 |a 9KX7ZMG0MK  |2 NLM 
650 7 |a potassium cyanate  |2 NLM 
650 7 |a G9C31TWN5M  |2 NLM 
650 7 |a Riboflavin  |2 NLM 
650 7 |a TLM2976OFR  |2 NLM 
700 1 |a Mori, Yuko  |e verfasserin  |4 aut 
700 1 |a Kitamura, Yoshie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 167(2010), 11 vom: 15. Juli, Seite 870-8  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:167  |g year:2010  |g number:11  |g day:15  |g month:07  |g pages:870-8 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2010.01.011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 167  |j 2010  |e 11  |b 15  |c 07  |h 870-8